
Deployment Strategies on
Kubernetes

By Etienne Tremel
Software engineer at Container Solutions
@etiennetremel
February 13th, 2017

Agenda

• Kubernetes in brief

• Look at 6 different strategies
• Recreate
• Ramped
• Blue/Green
• Canary
• A/B Testing
• Shadow

• Sum-up

• Next

2

Kubernetes in brief
Deployments, replica-sets, pods and services

3

Kubernetes in brief
Advanced routing using Ingress

4

Ingress controllers:
- Nginx
- HA Proxy
- Traefik
- Istio
- Linkerd
- GKE
- etc.

Kubernetes in brief
Configuration

5

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

Deployment configuration:

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Service configuration:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: my-ingress
 annotations:
 kubernetes.io/ingress.class: nginx
spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /foo
 backend:
 serviceName: my-service
 servicePort: 80
 - path: /bar
 backend:
 serviceName: my-other-service
 servicePort: 80

Ingress configuration:

Deployment

ReplicaSet

Pod

Deployment strategies

6

• Recreate native

• Ramped native

• Blue/Green extra step needed

• Canary extra step needed

• A/B Testing require additional component

• Shadow require additional component

Get your hands on: https://github.com/ContainerSolutions/k8s-deployment-strategies

https://github.com/ContainerSolutions/k8s-deployment-strategies

7

Recreate

Recreate

8

In this case [LB] is a Kubernetes Service

Recreate

9

In this case [LB] is a Kubernetes Service

Recreate

10

In this case [LB] is a Kubernetes Service

Recreate

11

In this case [LB] is a Kubernetes Service

Recreate

12

[...]
kind: Deployment
spec:
 replicas: 3
 strategy:
 type: Recreate
[...]

$ kubectl apply -f ./manifest.yaml

Recreate
Pattern of the traffic during a release

13

Service unavailable

Recreate

Pros:
• easy to setup

Cons:
• high impact on the user, expect downtime that depends on both shutdown and boot duration

of the application

14

15

Ramped
aka incremental, rolling update

Ramped - aka Incremental, Rolling

16

In this case [LB] is a Kubernetes Service

Ramped - aka Incremental, Rolling

17

In this case [LB] is a Kubernetes Service

Ramped - aka Incremental, Rolling

18

In this case [LB] is a Kubernetes Service

Ramped - aka Incremental, Rolling

19

In this case [LB] is a Kubernetes Service

Ramped - aka Incremental, Rolling

20

In this case [LB] is a Kubernetes Service

Ramped - aka Incremental, Rolling

21

[...]
kind: Deployment
spec:
 replicas: 3
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 2 # how many pods we can add at a time
 maxUnavailable: 0 # maxUnavailable define how many pods can be
 # unavailable during the rolling update
[...]

$ kubectl apply -f ./manifest.yaml

Ramped - aka Incremental, Rolling
Pattern of the traffic during a release

22

Ramped - aka Incremental, Rolling

Pros:
• easy to use

• version is slowly released across instances

• convenient for stateful applications that can handle ongoing rebalancing of the data

Cons:
• rollout/rollback can take time

• no control over traffic

23

24

Blue/Green
aka red/black

Blue/Green - aka Red/Black

25

Blue/Green - aka Red/Black

26

Blue/Green - aka Red/Black

27

Blue/Green - aka Red/Black

28

Blue/Green - aka Red/Black
Single service deployment

29

[...]
kind: Service
spec:
 # Note here that we match both the app and the version.
 # When switching traffic, update the label “version” with
 # the appropriate value, ie: v2.0.0
 selector:
 app: my-app
 version: v1.0.0
[...] $ kubectl apply -f ./manifest-v2.yaml

$ kubectl patch service my-app -p \
 '{"spec":{"selector":{"version":"v2.0.0"}}}'
$ kubectl delete -f ./manifest-v1.yaml

Blue/Green - aka Red/Black
To rollout multiple services at once, use Ingress

30

[...]
kind: Ingress
spec:
 rules:
 - host: login.domain.com
 http:
 paths:
 - backend:
 serviceName: login-v2
 servicePort: 80
 - host: cart.domain.com
 http:
 paths:
 - backend:
 serviceName: cart-v2
 servicePort: 80
[...]

[...]
kind: Service
metadata:
 name: login-v2
spec:
 selector:
 app: login
 version: v2.0.0
[...]

[...]
kind: Service
metadata:
 name: cart-v2
spec:
 selector:
 app: cart
 version: v2.0.0
[...]

$ kubectl apply -f ./manifest-v2.yaml
$ kubectl apply -f ./ingress.yaml
$ kubectl delete -f ./manifest-v1.yaml

Blue/Green - aka Red/Black
Pattern of the traffic during a release

31

Blue/Green - aka Red/Black

Pros:
• instant rollout/rollback

• good fit for front-end that load versioned assets from the same server

• dirty way to fix application dependency hell

Cons:
• expensive as it requires double the resources

• proper test of the entire platform should be done before releasing to production

32

33

Canary

Canary

34

Canary

35

Canary

36

Canary

37

Canary

38

[...]
kind: Deployment
metadata:
 name: my-app-v1
spec:
 replicas: 9
 template:
 labels:
 app: my-app
 version: v1.0.0
[...]

[...]
kind: Service
metadata:
 name: my-app
spec:
 selector:
 app: my-app
[...]

[...]
kind: Deployment
metadata:
 name: my-app-v2
spec:
 replicas: 1
 template:
 labels:
 app: my-app
 version: v2.0.0
[...]

$ kubectl apply -f ./manifest-v2.yaml
$ kubectl scale deploy/my-app-v2 --replicas=10
$ kubectl delete -f ./manifest-v1.yaml

Canary
Example of shifting traffic based on weight (percentage) using Istio

39

[...]
kind: RouteRule
metadata:
 name: my-app
spec:
 destination:
 name: my-app
 route:
 - labels:
 version: v1.0.0
 weight: 90 # 90% traffic
 - labels:
 version: v2.0.0
 weight: 10 # 10% traffic
[...]

$ kubectl apply -f ./manifest-v2.yaml
$ kubectl apply -f ./routerule.yaml

Canary
Pattern of the traffic during a release

40

Canary

Pros:
• version released for a subset of users

• convenient for error rate and performance monitoring

• fast rollback

Cons:
• slow rollout

• sticky sessions might be required

• precise traffic shifting would require additional tool like Istio or Linkerd

41

42

A/B Testing

A/B Testing

43

A/B Testing

44

A/B Testing

45

A/B Testing

46

Possible conditions:
- Geolocalisation
- Language
- Cookie
- User Agent (device, OS, etc.)
- Custom Header
- Query parameters

A/B Testing
Example of shifting traffic based on request Headers using Istio

47

[...]
kind: RouteRule
metadata:
 name: my-app-v1
spec:
 destination:
 name: my-app
 route:
 - labels:
 version: v1.0.0
 match:
 request:
 headers:
 x-api-version:
 exact: "v1.0.0"
[...]

[...]
kind: RouteRule
metadata:
 name: my-app-v2
spec:
 destination:
 name: my-app
 route:
 - labels:
 version: v2.0.0
 match:
 request:
 headers:
 x-api-version:
 exact: "v2.0.0"
[...]

$ kubectl apply -f ./manifest-v2.yaml
$ kubectl apply -f ./routerule.yaml

A/B Testing
Pattern of the traffic during a release

48

A/B Testing

Pros:
• several versions run in parallel

• full control over the traffic distribution

• great tool that can be used for business purpose to improve conversion

Cons:
• requires intelligent load balancer (Istio, Linkerd, etc.)

• hard to troubleshoot errors for a given session, distributed tracing becomes mandatory

49

50

Shadow
aka Mirrored, Dark

Shadow - aka Mirrored, Dark

51

Shadow - aka Mirrored, Dark

52

Shadow - aka Mirrored, Dark

53

Shadow - aka Mirrored, Dark

54

Shadow - aka Mirrored, Dark
Example of mirroring traffic using Istio

55

[...]
kind: RouteRule
spec:
 destination:
 name: my-app
 route:
 - labels:
 version: v1.0.0
 weight: 100
 - labels:
 version: v2.0.0
 weight: 0
 mirror:
 name: my-app-v2
 labels:
 version: v2.0.0
[...]

$ kubectl apply -f ./manifest-v2.yaml
$ kubectl apply -f ./routerule.yaml

Shadow - aka Mirrored, Dark
Pattern of the traffic during a release

56

Shadow - aka Mirrored, Dark

Pros:
• performance testing of the application with production traffic
• no impact on the user
• no rollout until the stability and performance of the application meet the requirements

Cons:
• complex to setup
• expensive as it requires double the resources
• not a true user test and can be misleading
• requires mocking/stubbing service for certain cases

57

Sum-up

• recreate if downtime is not a problem

• recreate and ramped doesn’t require any extra step (kubectl apply is enough)

• ramped and blue/green deployment are usually a good fit and easy to use

• blue/green is a good fit for front-end that load versioned assets from the same server

• blue/green and shadow can be expensive

• canary and a/b testing should be used if little confidence on the quality of the release

• canary, a/b testing and shadow might require additional cluster component

58

Sum-up

59

Next

Hands on Kubernetes deployment strategies:

https://github.com/ContainerSolutions/k8s-deployment-strategies

Blog post about strategies:

https://container-solutions.com/kubernetes-deployment-strategies

https://thenewstack.io/deployment-strategies

60

https://github.com/ContainerSolutions/k8s-deployment-strategies
https://container-solutions.com/kubernetes-deployment-strategies
https://thenewstack.io/deployment-strategies

Thank You

61

